This is a very basic look at using METAFONT and gnuplot to make figures
for use in BTEX. I am using Linux, but the same process ought to work for
other BTEX environments; indeed, that ought to be one of its strengths.

1. First, on firing up gnuplot, type this:
gnuplot> help set term mf detailed

and copy the result to a text file (I just used cut and paste off the screen).
It is 90% of what you need, maybe more if you are more knowledgeable
than me.

2. Then type something like this:

gnuplot> set xrange [0:3.14159]
gnuplot> plot sin(x), cos(x)
gnuplot> set term mf

gnuplot> set output "test2.mf"
gnuplot> replot

gnuplot> exit

3. Then edit the resulting file test2.mf and read the bit that says:

%Include next eight lines if you have problems with the mode on your
%system. .

proofing:=0;

fontmaking:=1;

tracingtitles:=0;

pixels_per_inch:=600;

blacker:=0;

fillin:=.2;

o_correction:=.6;

fix_units;

and think about uncommenting bits. I uncommented all of it, as you can
see.

4. Then type something like:

$ mf ’\mode=ljfour; input test2’
$ gftopk test2.600gf

and have a look at the files you have created; you ought to see test2.600pk/gf
and test2.tfm.

5. If you like at this point you can try:



$ gftodvi test2.600gf
$ xdvi test

and you should see the picture appear in the .dvi file.

. Now, you want your IATEX file to be able to use your figure. It does so as
a font rather than as a graphic. Since BTEX (and TEX) can handle fonts
natively but uses external packages to import other graphic formats, this
is a strength of the approach, though less important in these days of very
powerful machines.

Create a simple .tex file, something like this one you are reading now.
Put the below in the preamble (though it can go anywhere you like as long
as it’s before you want to use the figure):

\font\gnufigs=test2

This tells the typesetting program that you want to use a font called ‘gnu-
figs’, and that the information about this font is in files called test2.tfm
and test2.XXXpk where XXX is the dots-per-inch (600 in the example
above).

The picture is character 0 (zero) in your ‘font’. Indeed, if you’ve only done
as I suggest here, it is the only character. To insert it you just type:

{\gnufigs \charO}

somewhere in your file. You can embed this in a figure environment if
you want the usual ETEX cross referencing. See for example figure 1. Note
that this does not use \includegraphics, so does not have access to all
the formatting, scaling, cropping and other options of that command.

. What if it doesn’t work?

If your dvi viewer or whatever you are using to convert the .dvi file to
another format (PDF, PostScript, etc) complains that it can’t find the
font, it may mean that is is not clever enough to generate the pk file that
it needs from the METAFONT output. What I have done above generates
600 dpi output, but your system may want something else. Best thing
is to put the required dpi (it should be apparent in the error messages)
into the top of the .mf file — as noted above, there are some fields to
uncomment if you like, and the can also be edited. Then run gftopk on
the resulting .XXXgf file and you should be away. The mode flag on the
METAFONT command line may need to be altered or removed, I’'m not
sure.

You may find that dvipdfmx does a better job of making a PDF from the
.dvi file than going via PostScript. I find that the PostScript from dvips
looks good but ps2pdf sometimes does not give a good PDF file where
dvipdfmx does.



Figure 1: Here is my pointless plot.

8. Some more details.

BTEX (and TEX) need only the .tfm file to typeset the document — it
contains the information on the sizes and so forth of the characters. But
rendering the ‘glyph’ needs the pk file.

I find it simplest to leave these font files in the working directory. It makes
little sense to install a graphic as a font system-wide.

Keep in mind that gnuplot is scriptable. It can be run from the command
line. All the other steps can be similarly automated. That means that
this is a nice path for incorporating graphics that may themselves need to
be updated. Say you are using gnuplot to plot a text file full of data. If
that text file changes, you can just rerun a script that calls gnuplot and
runs METAFONT and any ancillary programs you need. This allows the
graphics to be dynamically updated without having to manually update
them. A similar thing can be done with other forms of output from gnuplot,
of course.



